Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 419
Filter
1.
Rev. Hosp. Ital. B. Aires (En línea) ; 43(4): 209-213, dic. 2023.
Article in Spanish | LILACS, UNISALUD, BINACIS | ID: biblio-1537564

ABSTRACT

La amiloidosis siempre ha representado un desafío diagnóstico. En el año 2020, el Grupo de Estudio de Amiloidosis (GEA), confeccionó la Guía de Práctica Clínica para el Diagnóstico de Amiloidosis. Nuevas líneas de investigación se han desarrollado posteriormente. Esta revisión narrativa tiene como intención explorar el estado del arte en el diagnóstico de la amiloidosis. En pacientes con amiloidosis se recomienda la tipificación de la proteína mediante espectrometría de masa, técnica de difícil ejecución por requerir de microdisectores láser para la preparación de la muestra. Algunas publicaciones recientes proponen otros métodos para obtener la muestra de amiloide que se va a analizar, permitiendo prescindir de la microdisección. Por otra parte, en pacientes con Amiloidosis ATTR confirmada, la recomendación de secuenciar el gen amiloidogénico se encontraba destinada a los casos sospechosos de ATTR hereditaria (ATTRv,), pero actualmente esta se ha extendido a todos los pacientes sin importar la edad. En lo que respecta a los estudios complementarios orientados al diagnóstico de compromiso cardíaco, se ha propuesto el uso de la inteligencia artificial para su interpretación, permitiendo la detección temprana de la enfermedad y el correcto diagnóstico diferencial. Para el diagnóstico de neuropatía, las últimas publicaciones proponen el uso de la cadena ligera de neurofilamento sérica, que también podría resultar un indicador útil para seguimiento. Finalmente, con referencia a la amiloidosis AL, la comunidad científica se encuentra interesada en definir qué características determinan el carácter amiloidogénico de las cadenas livianas. La N-glicosilación de dichas proteínas impresiona ser uno de los determinantes en cuestión. (AU)


Amyloidosis has always represented a diagnostic challenge. In 2020, the Amyloidosis Study Group (ASG) developed the "Clinical Practice Guideline for the Diagnosis of Amyloidosis". New lines of research have subsequently emerged. This narrative review aims to explore the state of the art in the diagnosis of amyloidosis diagnosis. In patients with amyloidosis, protein typing by mass spectrometry is recommended, a technique hard to perform because it requires laser microdissection for sample preparation. Recent publications propose other methods to obtain the amyloid sample to be analyzed, making it possible to dispense with microdissection. On the other hand, in patients with confirmed TTR amyloidosis (aTTR), the recommendation to sequence the amyloidogenic gene was intended for suspected cases of hereditary aTTR but has now been extended to all patients regardless of age. (AU)


Subject(s)
Humans , Amyloid Neuropathies, Familial/diagnosis , Early Diagnosis , Amyloidosis/diagnosis , Mass Spectrometry , Biopsy , Glycosylation , Artificial Intelligence , Magnetic Resonance Imaging , Sequence Analysis, DNA , Practice Guidelines as Topic , Diagnosis, Differential , Electrocardiography , High-Throughput Nucleotide Sequencing
2.
Med. infant ; 30(2): 168-171, Junio 2023.
Article in Spanish | LILACS, UNISALUD, BINACIS | ID: biblio-1443722

ABSTRACT

Las técnicas de Biología Molecular de última generación, como es la secuenciación masiva en paralelo o NGS (Next Generation Sequencing), permite obtener gran cantidad de información genómica, la cual muchas veces va más allá de la detección de una variante patogénica en un gen que explique la patología (hallazgo primario). Es así como surgió desde hace años la discusión internacional respecto a la decisión a tomar frente a los hallazgos secundarios accionables, es decir, aquellos hallazgos de variantes clasificadas como patogénicas o probablemente patogénicas que no están relacionadas con el fenotipo del paciente, pero que tiene alguna medida preventiva o tratamiento posible y, por lo tanto, podría ser de utilidad para la salud del paciente. Luego de revisar la bibliografía internacional y debatir entre los expertos del Hospital de Pediatría Garrahan, se logró establecer una política institucional y reforzar el hecho de que se trata de una disciplina multidisciplinaria. Así, fue posible definir que solo se atenderá las cuestiones relacionadas con la edad pediátrica, dejando para un tratamiento posterior aquellas variantes detectadas en genes que sean accionables en edad adulta. En el Hospital Garrahan, ha sido posible definir claramente cómo proceder frente a los hallazgos secundarios, al adaptar el consentimiento informado a esta necesidad, definiendo cuándo serán informados, y sabiendo que serán buscados intencionalmente en los genes clínicamente accionables enlistados en la última publicación del American College of Medical Genetics and Genomics, siempre y cuando el paciente/padre/tutor lo consienta (AU)


The latest generation of molecular biology techniques, including massive parallel sequencing or NGS (Next Generation Sequencing), allows us to obtain a whealth of genomic information, which often goes beyond the detection of a pathogenic variant in a gene that explains the pathology (primary finding). As a result, an international discussion has arisen over the years regarding the decision-making concerning actionable secondary findings, it means, those findings of variants classified as pathogenic or probably pathogenic that are not related to the patient's phenotype, but which have some possible preventive measure or treatment and, therefore, could be useful for the patient's health. After reviewing the international literature and discussing among the experts of the Hospital de Pediatría Garrahan, an institutional policy was established and the concept that this is a multidisciplinary discipline was reinforced. Consequently, it has been defined that only issues related to children will be addressed, reserving those variants detected in genes that are actionable in adulthood for later treatment. At Garrahan Hospital, we were able to clearly define how to proceed with secondary findings by adapting the informed consent to this need, defining when they will be reported, and knowing that they will be intentionally searched for in the clinically actionable genes listed in the latest publication of the American College of Medical Genetics and Genomics, as long as the patient/parent/guardian consents (AU)


Subject(s)
Humans , Genome, Human/genetics , Incidental Findings , High-Throughput Nucleotide Sequencing , Genomic Medicine/trends , Hospitals, Pediatric , Molecular Biology/trends , Informed Consent
3.
Med. infant ; 30(2): 191-197, Junio 2023. ilus
Article in Spanish | LILACS, UNISALUD, BINACIS | ID: biblio-1443762

ABSTRACT

Las enfermedades autoinflamatorias (AIDs) son un grupo heterogéneo de desórdenes monogénicos o poligénicos, con características de disregulación inmune innata y/o adaptativa, cuyo mecanismo central es la autoinflamación pero también pueden presentarse con autoinmunidad e inmunodeficiencia. En estos últimos años el desarrollo de las tecnologías de secuenciación masiva han provocado una explosión en el descubrimiento de nuevos genes responsables de AIDs monogénicas. Esto remarca la importancia de implementar este tipo de estudios para llegar a un diagnóstico definitivo sobre todo en este grupo de patologías genéticamente muy diversas donde los fenotipos clínicos se solapan. Sin embargo, dada la presencia de variantes de significación incierta (VUS), los resultados pueden no ser concluyentes planteándose la necesidad de desarrollar pruebas funcionales para determinar la patogenicidad de dichas variantes genéticas. En nuestro grupo de trabajo estamos aplicando la PCR digital en gotas (ddPCR), una técnica cuantitativa de 3era generación altamente sensible, especifica y reproducible que no necesita de curvas de calibración, para desarrollar pruebas funcionales que permitan no sólo reclasificar variantes VUS para lograr diagnósticos definitivos sino también estudiar los mecanismos responsables de las principales AIDs que permitan una estratificación de las terapéuticas especificas a aplicar y de esta manera poder contribuir al diagnóstico, tratamiento y seguimiento de nuestros pacientes en forma personalizada. (AU)


Autoinflammatory diseases (AIDs) are a heterogeneous group of monogenic or polygenic disorders, with characteristics of inborn and/or adaptive immune dysregulation, whose central mechanism is autoinflammation but may also present with autoimmunity and immunodeficiency. In recent years the development of massive sequencing technologies has led to an exponential increase in the discovery of new genes responsible for monogenic AIDs. This emphasizes the importance of the implementation of this type of studies to make a definitive diagnosis, especially in this group of genetically very diverse diseases with overlapping clinical phenotypes. However, given the presence of variants of uncertain significance (VUS), the results may not be conclusive, raising the need to develop functional tests to determine the pathogenicity of these genetic variants. In our working group we are applying droplet digital PCR (ddPCR), a highly sensitive, specific and reproducible third generation quantitative technique that does not require calibration curves, to develop functional tests that allow not only to reclassify VUS variants to achieve definitive diagnoses but also to study the mechanisms responsible for the main AIDs that allow for the stratification of specific treatments to be used and thereby contribute to the individualized diagnosis, treatment, and follow-up of our patients (AU)


Subject(s)
Humans , Male , Female , Child , Adolescent , Autoimmune Diseases/diagnosis , Therapeutics/instrumentation , Polymerase Chain Reaction/methods , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/genetics , High-Throughput Nucleotide Sequencing , Laboratories, Hospital
4.
Med. infant ; 30(2): 204-213, Junio 2023. ilus, tab
Article in Spanish | LILACS, UNISALUD, BINACIS | ID: biblio-1443868

ABSTRACT

El Hospital Garrahan ha sido pionero en el diagnóstico molecular de patologías pediátricas en Argentina. Los avances tecnológicos de las últimas décadas en el área de la biología molecular, sentaron las bases para la optimización y ampliación del diagnóstico molecular a partir de la secuenciación masiva en paralelo de múltiples genes. El presente trabajo describe el proceso de implementación de los estudios de secuenciación de nueva generación y el desarrollo de la Unidad de Genómica en un hospital público pediátrico de alta complejidad, así como su impacto en las capacidades diagnósticas de enfermedades poco frecuentes de origen genético. La creación del Grupo Interdisciplinario de Estudios Genómicos constituyó la vía institucional para la toma de decisiones que implican la implementación de nuevos estudios genómicos y el establecimiento de prioridades diagnósticas, extendiendo la disponibilidad del diagnóstico molecular a más disciplinas. La Unidad de Genómica trabaja en diseñar las estrategias que permitan la mayor optimización de los recursos con los que cuenta el hospital, teniendo en cuenta el equipamiento disponible, las prioridades establecidas y la frecuencia de las distintas patologías. Se demuestra el salto significativo operado en nuestras capacidades diagnósticas, tanto en la variedad de enfermedades como en el número de genes analizados, habiendo estudiado a la fecha alrededor de 2.000 pacientes, muchos de los cuales ven de este modo finalizada su odisea diagnóstica. Los estudios de NGS se han convertido en una herramienta de la práctica diaria para la atención de un número importante de pacientes de nuestro hospital. Continuaremos trabajando para ampliar su aplicación a la mayor cantidad de patologías, a través de los mecanismos institucionales ya existentes (AU)


The Garrahan Hospital has been a pioneer in the molecular diagnosis of pediatric diseases in Argentina. The technological advances of the last decades in the area of molecular biology have laid the foundations for the optimization and expansion of molecular diagnostics through massive parallel sequencing of multiple genes. This study describes the process of implementation of next-generation sequencing studies and the development of the Genomics Unit in a public pediatric tertiary hospital, and its impact on the capacity to diagnose rare diseases of genetic origin. The creation of the Interdisciplinary Group of Genomic Studies constituted the institutional pathway for decision-making involving the implementation of new genomic studies and the establishment of diagnostic priorities, extending the availability of molecular diagnostics to additional disciplines. The Genomics Unit is working to design strategies that allow for optimization of the resources available to the hospital, taking into account the equipment available, the priorities established, and the frequency of the different diseases. It demonstrates the significant leap in our diagnostic capabilities, both in the variety of diseases and in the number of genes analyzed. To date, around 2,000 patients have been studies, many of whom have thus completed their diagnostic odyssey. NGS studies have become a tool in daily practice for the care of a significant number of patients in our hospital. We will continue working to expand its application to as many diseases as possible, through the existing institutional mechanisms (AU)


Subject(s)
Humans , Infant, Newborn , Infant , Child, Preschool , Child , Adolescent , Genomics/instrumentation , Molecular Diagnostic Techniques/methods , High-Throughput Nucleotide Sequencing , Genomic Medicine/trends , Genetic Diseases, Inborn/diagnosis , Laboratories, Hospital , Hospitals, Pediatric
5.
Biosci. j. (Online) ; 39: e39039, 2023. ilus, tab, graf
Article in English | LILACS | ID: biblio-1428174

ABSTRACT

In order to explore the endophytic fungi of Fagopyrum Mill and Avena sativa, Illumina Miseq high-throughput sequencing was used to analyze the community structure and diversity of endophytic fungi in leaves and roots of buckwheat and oat at the mature stage. The results of community structure showed that there were 205 operational taxonomic units (OTUs) in buckwheat roots and 181 OTUs in buckwheat leaves based on 97% sequence similarity level. There were 152 OTUs and 127 OTUs in the root and the leaf of oat, respectively. At the phylum level, Ascomycota and Basidiomycota were the dominant endophytic fungi in buckwheat roots and leaves, while Ascomycota was the dominant endophytic fungus in oat roots and leaves. Alpha diversity analysis showed that the Ace index, Chao index and Shannon index of buckwheat roots were higher than that of buckwheat leaves, and the three indices of oat roots were also higher than that of oat leaves, indicating that the richness and diversity of endophytic fungi community in roots were higher than that in leaves. Biomarkers were found by significant difference analysis in buckwheat and oat. The endophytic functional groups of buckwheat and oat were mainly distributed in Pathotroph and Saprotroph. The results of this study laid a foundation for fully exploiting the dominant endophytic fungal resources of buckwheat and oat and further developing microbial fertilizers.


Subject(s)
Ascomycota , Basidiomycota , Avena , Fagopyrum , High-Throughput Nucleotide Sequencing
6.
Chinese Journal of Hematology ; (12): 316-320, 2023.
Article in Chinese | WPRIM | ID: wpr-984621

ABSTRACT

Objective: To report gene mutations in nine patients with hereditary elliptocytosis (HE) and analyze the characteristics of pathogenic gene mutations in HE. Methods: The clinical and gene mutations of nine patients clinically diagnosed with HE at Institute of Hematology & Blood Diseases Hospital from June 2018 to February 2022 were reported and verified by next-generation sequencing to analyze the relationship between gene mutations and clinical phenotypes. Results: Erythrocyte membrane protein gene mutations were detected among nine patients with HE, including six with SPTA1 mutation, one with SPTB mutation, one with EPB41 mutation, and one with chromosome 20 copy deletion. A total of 11 gene mutation sites were involved, including 6 known mutations and 5 novel mutations. The five novel mutations included SPTA1: c.1247A>C (p. K416T) in exon 9, c.1891delG (p. A631fs*17) in exon 15, E6-E12 Del; SPTB: c.154C>T (p. R52W) ; and EPB41: c.1636A>G (p. I546V) . Three of the six patients with the SPTA1 mutation were SPTA1 exon 9 mutation. Conclusion: SPTA1 is the most common mutant gene in patients with HE.


Subject(s)
Humans , Mutation , Elliptocytosis, Hereditary/metabolism , Erythrocyte Membrane/metabolism , Exons , High-Throughput Nucleotide Sequencing , Spherocytosis, Hereditary/metabolism
7.
Philippine Journal of Pathology ; (2): 42-48, 2023.
Article in English | WPRIM | ID: wpr-984547

ABSTRACT

@#RUNX1::RUNX1T1 is a core-binding factor driving fusion gene which arises from t(8;21)(q22;q22). It is one of the most common chromosomal rearrangements in both pediatric and adult Acute Myeloid Leukemia (AML) with a reported incidence o 15% in children and young adults. There are few case reports documenting RUNX1::RUNX1T1 translocation in pediatric AML. Although this is generally associated with a favorable prognosis, we report two (2) cases of de novo pediatric AML in the Philippines harboring a RUNX1::RUNX1T1 translocation, one eventually relapsed while the other attained remission but succumbed to sepsis.


Subject(s)
High-Throughput Nucleotide Sequencing
8.
Article in Spanish | LILACS, BIMENA | ID: biblio-1551676

ABSTRACT

Introducción: la muerte súbita se trata de un evento fatal e imprevisible. Realizada la autopsia y estudios complementarios, en ausencia de otros hallazgos que expliquen la causa de muerte, se clasifica como muerte súbita inexplicada. Siendo recomendable en estos casos realizar análisis genéticos, especialmente con metodologías de secuenciación de siguiente generación, las que permiten explicar un porcentaje importante de estos casos. Objetivo: analizar las publicaciones más relevantes sobre secuenciación de siguiente generación, aplicada a la autopsia molecular, para determinar aquellas muertes súbitas inexplicables relacionadas a cardiomiopatías y canalopatías. Metodología: se realizó la búsqueda en PubMed del Instituto Nacional de Salud usando palabras clave en inglés y español: NGS, muerte súbita, autopsia molecular y sus combinaciones. Además, se realizaron búsquedas en OMIN y ClinVar relacionada a las diferentes afecciones cardiacas relacionadas a muerte súbita. Los criterios de inclusión: artículos completos en español e inglés de libre acceso, con antigüedad máxima de diez años, realizados en cualquier área geográfica y que trataran sobre la temática. Resultados: para secuenciación de siguiente generación, muerte súbita se encontraron más de 22000 y 65000 publicaciones, respectivamente. En cambio, al combinar las palabras clave se recuperaron 74 trabajos, según los criterios de inclusión y objetivo del trabajo se revisaron 67 artículos. La aplicación de las plataformas de secuenciación en la investigación de casos de muerte súbita tomo auge en el 2014 y en poco tiempo, demostraron su versatilidad para el análisis de una gran cantidad de genes simultáneamente, de forma rápida y a bajo costo. Conclusiones: las patologías asociadas a muerte súbita son múltiples, complejas y pueden generar fenotipos variables que dificultan el análisis genético de las mismas. Las plataformas de secuenciación de siguiente generación son sumamente útiles en los casos de muerte súbita inexplicada, además permiten la identificación de variantes genéticas en familiares para la implementación de medidas preventivas...(AU)


Subject(s)
Humans , Autopsy/methods , Death, Sudden , Death, Sudden, Cardiac , High-Throughput Nucleotide Sequencing
9.
Chinese Journal of Biologicals ; (12): 1335-1340, 2023.
Article in Chinese | WPRIM | ID: wpr-998387

ABSTRACT

@#Objective To perform quality control in live attenuated yellow fever vaccine(chicken embryo cell)virus seed bank at the genomic level using the new generation Illumina/Solexa sequencing platform.Methods The live attenuated yellow fever vaccine strain YF17D-204 was inoculated into primary chicken embryo cells,and the chicken embryo cell adapted strains of live attenuated yellow fever vaccine were screened to establish YFV17D-CEC tertiary virus seed bank. The genome RNA of virus seeds was extracted,and the RNA library was prepared. The new generation Illumina/Solexa sequencing platform was used for high-throughput RNA sequencing. The whole genome nucleic acid sequence of yellow fever virus was systematically analyzed by using biological softwares such as FastQC,Trimmomatic,SPAdes,GapFiller,PrInSeS-G,Prokka,RepeatMasker,CRT,NCBI Blast~+,KAAS,HMMER3,TMHMM,SignalP,LipoP,ProtCamp and MegAlign.Results The whole genome of YFV17D-CEC tertiary virus seed bank contained 10 862 nucleotides,including an open reading frame(ORF)from 119 to 10 354(10 236 bp),encoding 3 412 amino acids. Sequence alignment analysis showed that the sequence of YF17D-CEC tertiary virus seed bank was 100% identical with YFV17D RKI(JN628279.1),YF/Vaccine/USA/Sanofi-Pasteur-17D-204/UF795AA/YFVax(JX503529.1)and YFV17D-204(KF769015.1),and no mutation occurred in the whole genome of the tertiary virus seed bank. Comparison of the sequences of different live attenuated yellow fever vaccine strains showed that yellow fever virus had multiple polymorphic sites.Conclusion YFV17DCEC has good genetic stability in primary chicken embryo cells. High-throughput RNA sequencing technology can quickly detect the whole genome information of YF17D-CEC virus seed bank,and the sequence analysis data can be used in the gene level quality control of yellow fever vaccine virus seed banks.


Subject(s)
High-Throughput Nucleotide Sequencing , Gene Expression , Quality Control
10.
Journal of Southern Medical University ; (12): 1110-1115, 2023.
Article in Chinese | WPRIM | ID: wpr-987028

ABSTRACT

OBJECTIVE@#To investigate the molecular mechanism underlying inherent fosfomycin resistance of Klebsiella pneumoniae (K. pneumoniae).@*METHODS@#The draft genomic sequences of 14 clinical hypervirulent/hypermucoviscous K. pneumoniae (HvKP/ HmKP) isolates were obtained using the next-generation sequencing technology. The genomic sequences were analyzed using the Resistance Gene Identifier (RGI) software for predicting the resistome based on homology and SNP models in the Comprehensive Antibiotic Resistance Database (CARD) and for identification of the presence of phosphomycin resistancerelated genes uhpt and fosA and their mutations in the bacterial genomes. The results were verified by analyzing a total of 521 full-length genomic sequences of K. pneumonia strains obtained from GenBank.@*RESULTS@#All the 14 clinical isolates of HvKP/ HmKP carried hexose phosphate transporter (UhpT) gene mutation, in which the glutamic acid was mutated to glutamine at 350aa (UhpTE350Q mutation); the presence of fosA6 gene was detected in 12 (85.71%) of the isolates and fosA5 gene was detected in the other 2 (14.29%) isolates. Analysis of the genomic sequences of 521 K. pneumonia strains from GenBank showed that 508 (97.50%) strains carried UhpTE350Q mutation, 439 (84.26%) strains harbored fosA6, and 80 (15.36%) strains harbored fosA5; 507 (97.31%) strains were found to have both UhpTE350Q mutation and fosA6/5 genes in the genome. Only 12 (2.30%) strains carried fosA6/5 genes without UhpTE350Q mutation; 1 (0.19%) strain had only UhpTE350Q mutation without fosA6/5 genes, and another strain contained neither UhpTE350Q mutation nor fosA6/5 genes.@*CONCLUSION@#UhpTE350Q mutation with the presence of fosA6/5 genes are ubiquitous in K. pneumonia genomes, indicating a possible intrinsic mechanism of fosfomycin resistance in the bacterium to limit the use of fosfomycin against infections caused by K. pneumoniae, especially the multi-resistant HvKP/HmKP strains.


Subject(s)
Fosfomycin , Klebsiella pneumoniae , Mutation , Databases, Factual , High-Throughput Nucleotide Sequencing
11.
Chinese Journal of Pediatrics ; (12): 527-532, 2023.
Article in Chinese | WPRIM | ID: wpr-985903

ABSTRACT

Objective: To describe the gene mutation profile of newly diagnosed pediatric B-acute lymphoblastic leukemia (B-ALL) and analyze its effect on minimal residual disease (MRD). Methods: A total of 506 newly diagnosed B-ALL children treated in Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences from September 2018 to July 2021 were enrolled in this retrospective cohort study. The enrolled children were divided into MRD ≥1.00% group and <1.00% group according to MRD results on the 19th day since chemotherapy, and MRD ≥0.01% group and <0.01% group according to MRD results on the 46th day. Clinical characteristics and gene mutations of two groups were compared. Comparisons between groups were performed with chi-square test or Fisher's exact test. Independent risk factors of MRD results on the 19th day and the 46th day were analyzed by Logistic regression model. Results: Among all 506 patients, there were 318 males and 188 females. On the 19th day, there were 114 patients in the MRD ≥1.00% group and 392 patients in the MRD <1.00% group. On the 46th day, there were 76 patients in the MRD ≥0.01% group and 430 patients in the MRD <0.01% group. A total of 187 gene mutations were detected in 487 (96.2%) of 506 children. The most common gene mutations were signal transduction-related KRAS gene mutations in 111 cases (22.8%) and NRAS gene mutations in 99 cases (20.3%). Multivariate analysis showed that PTPN11 (OR=1.92, 95%CI 1.00-3.63), KMT2A (OR=3.51, 95%CI 1.07-11.50) gene mutations and TEL-AML1 (OR=0.48, 95%CI 0.27-0.87), BCR-ABL1 (OR=0.27, 95%CI 0.08-0.92) fusion genes and age >10 years (OR=1.91, 95%CI 1.12-3.24) were independent influencing factors for MRD ≥1.00% on the 19th day. BCORL1 (OR=2.96, 95%CI 1.18-7.44), JAK2 (OR=2.99, 95%CI 1.07-8.42) and JAK3 (OR=4.83, 95%CI 1.50-15.60) gene mutations and TEL-AML1 (OR=0.43, 95%CI 0.21-0.87) fusion gene were independent influencing factors for MRD ≥0.01% on the 46th day. Conclusions: Children with B-ALL are prone to genetic mutations, with abnormalities in the RAS signaling pathway being the most common. Signal transduction related PTPN11, JAK2 and JAK3 gene mutations, epigenetic related KMT2A gene mutation and transcription factor related BCORL1 gene mutation are independent risk factors for MRD.


Subject(s)
Child , Female , Male , Humans , High-Throughput Nucleotide Sequencing , Neoplasm, Residual/genetics , Retrospective Studies , Genomics , Precursor Cell Lymphoblastic Leukemia-Lymphoma
12.
Chinese Journal of Pathology ; (12): 580-585, 2023.
Article in Chinese | WPRIM | ID: wpr-985736

ABSTRACT

Objective: To investigate the differences in molecular classification of endometrial carcinoma (EC) between various technical methods and to explore molecular classification schemes suitable for Chinese population. Methods: The study used a comprehensive scheme of next generation sequencing (NGS) and immunohistochemistry for molecular classification of 254 EC cases that were obtained at Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China from April 2021 to March 2022. According to the recommended threshold of Sanger sequencing which was approximate-20% variant allele fraction (VAF), NGS data were extracted to simulate the results of Sanger sequencing. Results: The 254 EC patients had a mean age of 51 years (range, 24 to 89 years). Combination of POLE (9-14 exons), TP53 total exons and microsatellite instability (MSI) detection was a better single scheme than NGS alone, while combination of MSI fragment analysis and conventional immunohistochemistry was the best solution and seemed best aligned with TCGA data and recent studies. POLE ultramuted type, mismatch repair defect type, TP53 mutant type and non-specific molecular characteristic type accounted for 11.4% (29/254), 31.5% (80/254), 22.4% (57/254) and 34.6% (88/254) of the cases, respectively. If Sanger sequencing was adopted for POLE and TP53 detection, the frequencies of these EC types were 9.1% (23/254), 31.5% (80/254), 12.9% (33/254) and 46.6% (118/254), respectively, with greatly increasing non-specific molecular characteristics cases. If POLE was detected by Sanger sequencing and others by immunohistochemistry, they were 9.1% (23/254), 42.2% (92/218), 13.8% (35/254) and 40.9% (105/254), respectively, with increasing the false positive rates of the mismatch repair defect group. Conclusions: Small and medium-sized NGS panels with MSI detection is a better solution than NGS alone. Sanger sequencing is currently available for POLE mutation detection, which is not sensitive enough for TP53 mutation detection, and seems equivalent to the efficiency of TP53 by immunohistochemistry. Further optimization of small and medium-sized NGS panels covering MSI detection and POLE and TP53 full exons may be the best choice for the future to meet national conditions.


Subject(s)
Female , Humans , Middle Aged , Young Adult , Adult , Aged , Aged, 80 and over , China , Endometrial Neoplasms/pathology , Exons , High-Throughput Nucleotide Sequencing , Immunohistochemistry , Microsatellite Instability , Mutation
13.
Chinese Journal of Pathology ; (12): 370-375, 2023.
Article in Chinese | WPRIM | ID: wpr-985682

ABSTRACT

Objective: To investigate the distribution and characteristics of gene mutations in osteosarcoma, and to analyze the frequency and types of detectable mutations, and to identify potential targets for individualized treatment of osteosarcoma. Methods: The fresh tissue or paraffin-embedded tissue samples of 64 cases of osteosarcoma that were surgically resected or biopsied and then subject to next generation sequencing, were collected from Beijing Jishuitan Hospital, China from November 2018 to December 2021. The tumor DNA was extracted to detect the somatic and germline mutations using targeted sequencing technology. Results: Among the 64 patients, 41 were males and 23 were females. The patient age ranged from 6 to 65 years with a median age of 17 years, including 36 children (under 18 years old) and 28 adults. There were 52 cases of conventional osteosarcoma, 3 cases of telangiectatic osteosarcoma, 7 cases of secondary osteosarcoma, and 2 cases of parosteosarcoma. The detection rate of gene mutations was overall 84.4% (54/64). There were 324 variations in 180 mutated genes, including 125 genes with copy number variations, 109 single nucleotide variants, 83 insertions or deletions, and 7 gene fusions. The most common mutated genes were TP53, VEGFA, CCND3, ATRX, MYC, RB1, PTEN, GLI1, CDK4 and PTPRD. Among them, TP53 had the highest mutation rate (21/64, 32.8%), single nucleotide variant was the main mutation type (14/23, 60.9%), and 2 cases carried the TP53 germline mutation. VEGFA and CCND3 showed copy number amplification simultaneously in 7 cases. Conclusions: The high-frequency mutation of TP53 suggests that it plays an important role in the pathogenesis and development of osteosarcoma. VEGFA, CCND3 and ATRX are mutated genes in osteosarcoma and worthy of further studies. Combination of pathologic diagnosis and next generation sequencing with clinical practice can guide individualized treatment for patients with refractory, recurrent and metastatic osteosarcoma.


Subject(s)
Adult , Male , Child , Female , Humans , Adolescent , Young Adult , Middle Aged , Aged , DNA Copy Number Variations , Osteosarcoma/pathology , Mutation , DNA, Neoplasm , High-Throughput Nucleotide Sequencing , Bone Neoplasms/pathology , Nucleotides
14.
Chinese Journal of Preventive Medicine ; (12): 766-770, 2023.
Article in Chinese | WPRIM | ID: wpr-985470

ABSTRACT

Antiphospholipid syndrome (APS) is characterized by arterial and venous thrombosis and(or) morbid pregnancy, accompanied by persistent antiphospholipid antibody (aPL) positivity. However, due to the complex pathogenesis of APS and the large individual differences in the expression of aPL profiles of patients, the problem of APS diagnosis, prognosis judgment and risk assessment may not be solved only from antibody level. It is necessary to use new technologies and multiple dimensions to explore novel APS biomarkers. The application of next generation sequencing (NGS) technology in diseases with high incidence of somatic mutations, such as genetic diseases and tumors, has been very mature. Thus, gradually understanding the research and application progress of APS by NGS technology from genome, transcriptome, epigenome and other aspects is meaningful. This article reviews the related research of NGS technology in APS, and provide more reference for the deep understanding of the APS-related screening markers and disease pathogenesis.


Subject(s)
Female , Pregnancy , Humans , Antiphospholipid Syndrome/diagnosis , Thrombosis/complications , Antibodies, Antiphospholipid , Biomarkers , High-Throughput Nucleotide Sequencing
15.
Journal of Experimental Hematology ; (6): 203-208, 2023.
Article in Chinese | WPRIM | ID: wpr-971125

ABSTRACT

OBJECTIVE@#To confirm the HLA genotypes of the samples including 4 cases of magnetic bead probe HLA genotyping result pattern abnormality and 3 cases of ambiguous result detected by PCR sequence-specific oligonudeotide probe (SSOP) method.@*METHODS@#All samples derived from HLA high-resolution typing laboratory were detected by PCR-SSOP. A total of 4 samples of magnetic bead probe HLA genotyping result pattern abnormality and 3 samples of ambiguous result were further confirmed by PCR sequence-based typing (SBT) technology and next-generation sequencing (NGS) technology.@*RESULTS@#A total of 4 samples of magnetic bead probe HLA genotyping result pattern abnormality were detected by PCR-SSOP method. The results of SBT and NGS showed that the HLA-A genotype of sample 1 did not match any known genotypes. NGS analysis revealed that the novel allele was different from the closest matching allele A*31:01:02:01at position 154 with G>A in exon 2, which resulting in one amino acid substitution at codon 28 from Valine to Methionine (p.Val28Met). The HLA-C genotype of sample 2 was C*03:119, 06:02, sample 3 was C*03:03, 07:137, and sample 4 was B*55:02, 55:12. A total of 3 samples with ambiguous result were initially detected by PCR-SSOP method. The re-examination results of SBT and NGS showed that the HLA-B genotype of sample 5 was B*15:58, 38:02, sample 6 was DRB1*04:05, 14:101, and sample 7 was DQB1*03:34, 05:02. Among them, alleles C*03:119, C*07:137 and DRB1*14:101 were not included in the Common and Well-documented Alleles (CWD) v2.4 of the Chinese Hematopoietic Stem Cell Donor Database.@*CONCLUSION@#The abnormal pattern of HLA genotyping results of magnetic probe by PCR-SSOP method suggests that it may be a rare allele or a novel allele, which needs to be verified by sequencing.


Subject(s)
Humans , Alleles , Polymerase Chain Reaction , Genotype , High-Throughput Nucleotide Sequencing , Histocompatibility Testing/methods , Technology
16.
Chinese Journal of Hepatology ; (12): 8-12, 2023.
Article in Chinese | WPRIM | ID: wpr-970938

ABSTRACT

Objective: To explore the etiological diagnostic value of metagenomic next-generation sequencing (mNGS) in peritoneal dialysis (PD)-related peritonitis. Methods: The study was a retrospective cohort study. The clinical data of patients with PD-related peritonitis who were treated and underwent microbial cultivation and mNGS test at the same time from June 2020 to July 2021 in the Affiliated Drum Tower Hospital, Medical School of Nanjing University were analyzed. The positive rate, detection time and consistency between mNGS test and traditional microbial culture were compared. Results: A total of 18 patients with age of (50.4±15.4) years old and median dialysis time of 34.0 (12.4, 62.0) months were enrolled in the study, including 11 males and 7 females. Pathogenic microorganisms were isolated in 17 patients by mNGS test, with a positive rate of 17/18, which was higher than 13/18 of microbial culture, but the difference was not statistically significant (P=0.219). Both mNGS test and microbial culture isolated positive pathogenic bacteria in 12 patients, and mNGS test isolated the same types of pathogenic bacteria as microbial cultivation did in 11 patients. In five patients with negative microbial culture, mNGS test also isolated pathogenic microorganisms, including 3 cases of Staphylococcus epidermidis, 1 case of Mycobacterium tuberculosis and 1 case of Ureaplasma urealyticum. In 1 patient, microbial culture isolated pathogenic bacteria (Escherichia coli) whereas mNGS test did not. The detection time of mNGS was 25.0 (24.0, 27.0) h, which was significantly shorter than 89.0 (72.8, 122.0) h of microbial culture (Z=3.726, P<0.001). Conclusions: mNGS test can improve the detection rate of pathogenic microorganisms in PD-related peritonitis and greatly shorten the detection time, and has good consistency with microbial culture. mNGS may provide a new approach for pathogen identification of PD-related peritonitis, especially refractory peritonitis.


Subject(s)
Female , Male , Humans , Adult , Middle Aged , Aged , Retrospective Studies , Peritoneal Dialysis/adverse effects , High-Throughput Nucleotide Sequencing , Peritonitis/diagnosis , Sensitivity and Specificity
17.
Chinese Journal of Medical Genetics ; (6): 364-367, 2023.
Article in Chinese | WPRIM | ID: wpr-970934

ABSTRACT

OBJECTIVE@#To explore the clinical and molecular characteristics of a child with Congenital disorders of glycosylation (CDG).@*METHODS@#A 4-month-old boy who had presented at the Children's Hospital Affiliated to Zhejiang University Medical School on December 31, 2019 due to feeding difficulties after birth was selected as the study subject. High-throughput sequencing was carried out for the patient, and real-time qPCR was used for validating the suspected deletion fragments and the carrier status of other members of his family.@*RESULTS@#High-throughput sequencing revealed that the child had lost the capture signal for chrX: 153 045 645-153 095 809 (approximately 50 kb), which has involved 4 OMIM genes including SRPK3, IDH3G, SSR4 and PDZD4. qPCR verified that the copy number in this region was zero, while that of his elder brother and parents was all normal.@*CONCLUSION@#The deletion of the fragment containing the SSR4 gene in the Xq28 region probably underlay the SSR4-CDG in this child.


Subject(s)
Aged , Child , Humans , Infant , Male , Gene Deletion , Glycosylation , High-Throughput Nucleotide Sequencing , Neoplasm Proteins , Parents , Siblings
18.
Chinese Journal of Medical Genetics ; (6): 148-154, 2023.
Article in Chinese | WPRIM | ID: wpr-970895

ABSTRACT

OBJECTIVE@#To assess the value of single sperm sequencing in preimplantation genetic testing for monogenic disease (PGT-M).@*METHODS@#A Chinese couple with two children whom had died of Spinal muscular atrophy (SMA) and attended the Jiangxi Provincial Maternal and Child Health Care Hospital in June 2020 was selected as the subject. Eleven single sperm samples were isolated by mechanical immobilization and subjected to whole genome amplification. Real-time PCR and Sanger sequencing were used to detect the SMN1 variants in the single sperm samples. Genomic DNA of the wife, her parents and the husband, as well as one single sperm sample harboring the SMN1 variant and two single sperm samples without the variant were used for the linkage analysis. Targeted capture and high-throughput sequencing were carried out to test 100 single nucleotide polymorphisms distributed within 2 Mb up- and downstream the variant site. The haplotypes linked with the SMN1 variants were determined by linkage analysis. Blastocyst embryos were harvested after fertilizing by intracytoplasmic sperm injection. Cells from the trophoblasts of each embryo were biopsied and subjected to whole genome amplification and targeted capture and high-throughput sequencing to determine their carrier status. Chromosomal aneuploidy of wild-type embryos was excluded. An euploid embryo of high quality was transferred. Amniotic fluid sample was taken at 18 weeks of gestation to confirm the status of the fetus.@*RESULTS@#Genetic testing showed that the couple both had deletion of exons 7 ~ 8 of the SMN1 gene. The wife has inherited the deletion from her father, while the husband was de novo. The haplotypes of the husband were successfully constructed by single sperm sequencing. Preimplantation genetic testing has indicated that 5 embryos had harbored the heterozygous variant, 4 embryos were of the wild type, among which 3 were euploid. Prenatal diagnosis during the second trimester of pregnancy has confirmed that the fetus did not carry the deletion.@*CONCLUSION@#By single sperm sequencing and PGT-M, the birth of further affected child has been successfully avoided.


Subject(s)
Humans , Pregnancy , Female , Child , Male , Preimplantation Diagnosis , East Asian People , Semen , Genetic Testing , Muscular Atrophy, Spinal/genetics , Aneuploidy , Blastocyst/pathology , High-Throughput Nucleotide Sequencing , Spermatozoa
19.
Chinese Journal of Medical Genetics ; (6): 57-61, 2023.
Article in Chinese | WPRIM | ID: wpr-970878

ABSTRACT

OBJECTIVE@#To explore the genetic basis for a child with mental retardation.@*METHODS@#Whole exome sequencing was carried out for the child. Candidate variant was screened based on his clinical features and verified by Sanger sequencing.@*RESULTS@#The child was found to harbor a c.995_1002delAGACAAAA(p.Asp332AlafsTer84) frameshift variant in the SYNGAP1 gene. Bioinformatic analysis suggested it to be pathogenic. The same variant was not detected in either parent.@*CONCLUSION@#The c.995_1002delAGACAAAA(p.Asp332AlafsTer84) frameshift variant of the SYNGAP1 gene probably underlay the mental retardation in this child. Above finding has expanded the spectrum of SYNGAP1 gene variants and provided a basis for the diagnosis and treatment for this child.


Subject(s)
Child , Humans , Intellectual Disability/genetics , Frameshift Mutation , High-Throughput Nucleotide Sequencing , Computational Biology , Heterozygote , Mutation , ras GTPase-Activating Proteins/genetics
20.
China Journal of Chinese Materia Medica ; (24): 596-607, 2023.
Article in Chinese | WPRIM | ID: wpr-970528

ABSTRACT

The tight relationships between microbiome and traditional Chinese medicine(TCM)have been widely recognized. New technologies, results, and theories are emerging in the field of microbiomics in recent years with the advances in high-throughput sequencing and multi-omics technologies. Based on the previous research, the present study has proposed the concept of TCM microbiomics(TCMM), which is an interdisciplinary subject aiming at elucidating the functions and applications of microbiome in the areas of herb resources, herb processing, herb storage, and clinical effects by using modern technology of biology, ecology, and informatics. This subject essentially contains the structures, functions, interactions, molecular mechanisms, and application strategies of the microbiome associated with the quality, safety, and efficacy of TCM. Firstly, the development of the TCMM concept was summarized, with the profound understanding of TCMM on the complexity and entirety of microbiome being emphasized. Then, the research contents and applications of TCMM in promoting the sustainable development of herb resources, improving the standardization and diversification of herb fermentation, strengthening the safety of herb storage, and resolving the scientific connotation of theories and clinical efficacy of TCM are reviewed. Finally, the research strategies and methods of TCM microbiomics were elaborated from basic research, application research, and system research. TCMM is expected to promote the integrative development of TCM with frontier science and technology, thereby expanding the depth and scope of TCM study and facilitating TCM modernization.


Subject(s)
Ecology , Fermentation , High-Throughput Nucleotide Sequencing , Medicine, Chinese Traditional , Research Design
SELECTION OF CITATIONS
SEARCH DETAIL